

Squalene purification from Olive oil refining by-products using Fast Centrifugal Partition Chromatography (FCPC[™])

Nikos Xynos¹, Nektarios Aligiannis², Leandros Skaltsounis²

¹Kromaton (Rousselet Robatel), Annonay, France ²University of Athens, Department of Pharmacognosy

INTRODUCTION

Squalene is an important chemical utilized in pharmaceuticals, nutritional supplements and cosmetics. Until recently, the main source of squalene has been shark liver's oil, which is rich in this valuable compound. This non-sustainable origin, nevertheless, is less and less accepted by numerous regulatory authorities. Thus, nowadays, more ecological and sustainable sources are being investigated in the plant kingdom. Olive fruit oil (*Olea europaea*) and *Amaranthus* seed oil, are among the most important sources in the plant kingdom. Moreover, more modern, efficacious and sustainable technologies are investigated, in order to guarantee high purities and recoveries for the extraction and isolation processes. Fast Centrifugal Partition Chromatography (FCPC[™]) ranks among the most modern, productive and cost-effective isolation technologies. It does not utilize any solid packing material that needs disposal, saves sample from irreversible adsorption and assures high throughputs, compared to preparative HPLC. Especially for very apolar compounds, FCPC[™] demonstrates its versatility by utilizing non-aqueous biphasic solvent systems.

4 <u>RESULTS & COCLUSIONS</u>

Bench preparative scale FCPC[™] with 1L rotor was utilized for the purification of squalene from olive oil deodorizer distillates (refining by-product), containing 13% squalene. FCPC A system was connected with integrated peripheral system comprising of elution pump (250ml/min), automated injection valve, UV-detector (200-600nm), fraction collector (192 tubes), software and built-in PC for automated control. Detection of Squalene was performed at 218nm and subsequent quantitative analysis was performed through Gas Chromatography. The purity and recovery of squalene were >95% and >90% respectively, within a short separation time and with reasonable solvent consumption, making the process very cost-efficient.

	PROCESS PARAMETERS		-	RESULTS	
	Flow rate	50 ml/min		Purity	>95%
	Rotation speed	1200 rpm		Recovery	>90%
	Solvent system	Hept/ACN/BuOH		Solvent	3L
		1.8:1.4:0.7		consumption	
	Injected Quantity	15g	_	Separation time	34 min.
Addres				Image: second	ne UHPLC-DAD chromatogram at 218m

WWW.KROMATON.COM || KROMATON@KROMATON.COM KROMATON Sarl - Rousselet Robatel Group - 45 Avenue Rhin et Danube - CS60129, 07100 ANNONAY, FRANCE